

BALTIC OLYMPIAD IN INFORMATICS

Güstrow, Germany April 24 – 28, 2007

Page 1 of 1

ENG

sequence

Sequence

We are given a sequence $a_1, ..., a_n$. We can manipulate this sequence using the operation reduce(i), which replaces elements a_i and a_{i+1} with a single element $max(a_i, a_{i+1})$, resulting in a new shorter sequence. The cost of this operation is $max(a_i, a_{i+1})$. After n - 1 operations reduce, we obtain a sequence of length 1. Our task is to compute the cost of the optimal reducing scheme, i.e. the sequence of *reduce* operations with minimal cost leading to a sequence of length 1.

Input

The input is read from a text file named sequence.in. The first line contains $n (1 \le n \le 1,000,000)$, the length of the sequence. The following n lines contain one integer a_i , the elements of the sequence $(0 \le a_i \le 1,000,000,000)$.

Output

The output is written into a text file named sequence.out. In the first and only line of the output print the minimal cost of reducing the sequence to a single element.

Example

sequence.in	sequence.out
3	5
1	
2	
3	

Grading

In 30% of the test cases $n \le 500$ holds. In 50% of the test cases $n \le 20,000$ holds.