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The source code of the sample programs as well as the test data and this
document in PDF format are available online at http://www.boi2007.de.



Introduction

The 13th Baltic Olympiad in Informatics took place in Güstrow, Germany,
from April 24 to April 28, 2007. Every year, countries around the Baltic
Sea send delegations of up to six of their most talented high school com-
puter scientists to represent their countries. This year, the organizers were
happy to host delegations from Denmark, Estonia, Finland, Germany, Latvia,
Lithuania, Norway, Poland and Sweden. A delegation from the hosting state
Mecklenburg West-Pomerania completed the field.

The contest comprises two sessions, in both of which participants are re-
quired to solve three tasks. For each task, a contestant should submit a pro-
gram that correctly and efficiently calculates the answer to the given problem.
It is a tradition of the Baltic Olympiad in Informatics that each country sub-
mits a task proposal. From these proposals two times three tasks were selected
that are challenging and cover a big variety of problem types. This booklet
contains these tasks and describes their solutions.

Special thanks go to the task authors and other contributors to this booklet:

Day 1

Task: escape (LTU)
Task author: Vilius Naudžiūnas
Solution: Linas Petrauskas, Thomas Fersch

Task: sorting (GER)
Task author: Adrian Kügel
Solution: Adrian Kügel

Task: sound (EST)
Task author: Ahto Truu
Solution: Ahto Truu, Jakub Radoszewski, Erik Panzer
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Introduction

Day 2

Task: fence (SWE)
Task author: Andreas Björklund
Solution: Jimmy Mårdell

Task: points (LAT)
Task author: Rihards Opmanis
Solution: Alexander Hullmann

Task: sequence (POL)
Task author: Jakub Radoszewski
Solution: Jakub Radoszewski

The scientific committee was represented by Felix Arends, Dominic Battré,
Hans-Christian Ebke, Thomas Fersch, Alexander Hullmann, Adrian Kügel,
Erik Panzer, and Tobias Polley. Many of their efforts went into writing sample
solutions and creating and validating test cases.

Dominic Battré
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Task 1: Escape

2.1 Task description

A group of war prisoners are trying to escape from a prison. They have thor-
oughly planned the escape from the prison itself, and after that they hope to
find shelter in a nearby village. However, the village (marked as B, see picture
below) and the prison (marked as A) are separated by a canyon which is also
guarded by soldiers. These soldiers sit in their pickets and rarely walk; the
range of view of each soldier is limited to exactly 100 meters. Thus, depend-
ing on the locations of soldiers, it may be possible to pass the canyon safely,
keeping the distance to the closest soldier strictly larger than 100 meters at
any moment.

You are to write a program which, given the width and the length of the
canyon and the coordinates of every soldier in the canyon, and assuming that
soldiers do not change their locations, first determines whether prisoners can
pass the canyon unnoticed. If this is impossible then the prisoners (having
seen enough violence) would like to know the minimum number of soldiers
that have to be eliminated in order to pass the canyon safely. A soldier may
be eliminated regardless of whether he is visible to any other soldier or not.
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Task 1: Escape

Input

The input is read from a text file named escape.in. The first line contains
three integers L, W , and N – the length and the width of the canyon, and
the number of soldiers, respectively. Each of the following N lines contains
a pair of integers Xi and Yi – the coordinates of i-th soldier in the canyon
(0 ≤ Xi ≤ L, 0 ≤ Yi ≤ W ). The coordinates are given in meters, relative to
the canyon: the southwestern corner of the canyon has coordinates (0, 0), and
the northeastern corner of the canyon has coordinates (L,W ), as seen in the
picture above.

Note that passing the canyon may start at coordinate (0, ys) for any 0 ≤
ys ≤ W and end at coordinate (L, ye) for any 0 ≤ ye ≤ W . Neither ys nor ye

need to be integer.

Output

The output is written into a text file named escape.out. In the first and
only line of the output file the program should print the minimum number of
soldiers that have to be eliminated in order for the prisoners to pass the canyon
safely. If the prisoners can escape without any elimination, the program should
print 0 (zero).

Example

escape.in escape.out
130 340 5
10 50
130 130
70 170
0 180
60 260

1

Constraints

1 ≤ W ≤ 50,000 1 ≤ L ≤ 50,000 1 ≤ N ≤ 250
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Task 1: Escape

Grading

Your program will receive partial credits if it can only determine whether the
prisoners need to eliminate any guard at all in order to escape. For this, several
test runs will be grouped to one test group. You will receive 30% of a test
groups’s credits in case you determine for each test run correctly whether any
guards need to be eliminated (0 means no guards need to be eliminated, any
integer > 0 means that any number of guards need to be eliminated). You will
receive 100% of a test group’s credits in case you determine for each test run
correctly how many guards need to be eliminated for the prisoners’ escape.

2.2 Solution description

The soldiers and the canyon can be modeled as an undirected graph G: Let
each soldier be represented by one vertex, where there is an edge between two
vertices if and only if areas visible by the two corresponding soldiers intersect
or touch, i.e. the distance between the two soldiers is less than or equal to 200.
Let there be two additional vertices s and t, where s represents the northern
side of the canyon and t the southern side of the canyon. Let these vertices be
connected to all vertices representing soldiers who can see the respective side
of the canyon, i.e. whose distance from the side is at most 100 meters.

Now it is fairly easy to decide if the canyon can be passed safely. Just
perform either depth-first-search or breadth-first-search to check whether there
is a path between s and t in G. If that is the case, then there exists a continuous
chain of areas visible by some soldier that connects the northern and southern
sides of the canyon, thus keeping the prisoners from passing it. Vice versa, if
there is no such chain of visible areas, the canyon can clearly be passed safely.

Deciding how many soldiers must be eliminated in order to pass the canyon
safely is a bit more complicated. Since the canyon can be passed safely if and
only if there is a path between s and t in G, one has to find (s − t)-vertex-
connectivity of G, i.e. how many vertices in G have to be deleted in order to
disconnect s and t. This is essentially a minimum cut problem. It can be
solved by setting edge capacities to ∞, vertex capacities to 1 and finding the
maximum flow from s to t (contrary to the standard minimum cut problem
for edges, where vertex capacities are set to ∞ and edge capacities to 1). To
make standard maximum flow algorithm applicable, vertex capacities have to
be eliminated, though. This can be done relatively easy by constructing a
directed graph G′, where each vertex of G except s and t is replaced by two
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Task 1: Escape

vertices, in-vertex and out-vertex. If edges in G′ are set according to figure 2.1
below, then the maximum flow from s to t in G will be equal to the maximum
flow from s to t in G′. Since there are no vertex capacities in G′, this maximum
flow and hence (s−t)-vertex-connectivity of G can now be found using standard
maximum flow algorithm.

Figure 2.1: Converting a vertex capacity (a) to an edge capacity (b)
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Task 2: Sorting

3.1 Task description

You are given the scores of several players in a competition. Your task is to
create a ranklist of the players, sorted in decreasing order by score.

Unfortunately, the data structure used for the list of players supports only
one operation, which moves a player from position i to position j without
changing the relative order of other players. If i > j, the positions of players
at positions between j and i− 1 increase by 1, otherwise if i < j the positions
of players at positions between i + 1 and j decrease by 1.

This operation takes i steps to locate the player to be moved, and j steps
to locate the position where he or she is moved to, so the overall cost of moving
a player from position i to position j is i + j. Here, positions are numbered
starting with 1.

Determine a sequence of moves to create the ranklist such that the sum of
the costs of the moves is minimized.

Input

The input is read from a text file named sorting.in . The first line contains n
(2 ≤ n ≤ 1000), the number of players. Each of the following n lines contains
one non-negative integer si (0 ≤ si ≤ 1,000,000), the scores of the players in
the current order. You may assume that all scores are distinct.

Output

The output is written into a text file named sorting.out . In the first line
of the output print the number of moves used to create the ranklist. The
following lines should specify the moves in the order in which they are applied.
Each move should be described by a line containing two integers i and j, which
means that the player at position i is moved to position j. The numbers i and
j must be separated by a single space.
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Task 2: Sorting

Example

sorting.in sorting.out
5
20
30
5
15
10

2
2 1
3 5

Grading

30% of the test cases have values of n ≤ 10

3.2 Solution description

Important observations

When looking at the description of what happens when moving a player, we
can see that if we move a player towards the front of the list, the moving cost
of some other players increases, whereas if we move a player towards the end
of the list, the moving cost of some other players decreases. So, it might be
helpful to move players first which have to be moved towards the end of the
list to decrease the moving costs of future moves. This observation may lead
to following two ideas:

1. Each player is moved at most once.

2. The players who are moved are moved in ascending order according to
their score.

A proof that these two ideas are correct will follow later.

Brute force solution

Using the two ideas mentioned above, a brute force solution would try all se-
lections of players to be moved, and then move them to their required position
in ascending order according to their score. The complexity of this solution
would be O(n2 · 2n).
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Task 2: Sorting

Dynamic programming solution

Let the players be numbered from 1 to n according to their final position in
the ranklist. With dynamic programming, we want to determine the minimum
cost to get the players i . . . n in their correct relative order with the first of these
players at original position j. It is tricky to determine the current position of
the next player to be moved. It would be far easier if we knew that all players
(i+1) . . . n already moved towards the end of the list; in that case, in order to
determine the current position of player i, we could count how many players
with bigger scores exist which have an original index position smaller than
player i. Obviously, if some of the players with the n− i smallest scores didn’t
move, the current position for player i determined by this method can be too
small.

However, if we assign a moving cost to each player who doesn’t move we
can take care of the underestimated moving cost for players with bigger score.
Let’s see what happens if we didn’t move player j. This means that players
with bigger score will be moved before him, so when determining the position
of a player i which appears after player j in the list, the determined rank would
be too small by j − i. So the moving cost for a player who doesn’t move is
the sum of j − pi for all players pi < j which appear between player j and the
position of player j + 1.

It is possible to implement a dynamic programming solution using this idea
with complexity O(n2) (see sorting.cpp). With the dynamic programming
we can determine the minimal overall moving costs and which players were
moved. Now, we simply need the second part of the brute force solution to
generate the actual moves performed.

Proof

Here is the proof why the two ideas mentioned above are correct:
Lets look at the player pmin with the smallest score, who has to end up at
position n.

Claim 1: If pmin is moved at all, it is optimal to move him directly to the
end of the list.

Proof: Obviously, moving him towards the front will only increase the costs
of other players to be moved. So assume he will be moved towards the end
to a position i < n (thus saving n− i steps). Now there are two possibilities:
either, the n− i players after him in the list have to be moved and their costs
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Task 2: Sorting

are increased by 1 (as opposed to that pmin was moved to the end), or pmin

has to be moved again, which clearly is not optimal.
Claim 2: If pmin is moved at all, we can do this in the first move.
Proof: Following from Claim 1, we already know the second part of the

moving costs is fixed. So the only reason not to move pmin first is that his
current position decreases caused by moving other players. But these players
have their moving costs increased by 1 because pmin wasn’t moved to the end.

If pmin is moved, we have reduced our problem to the same problem with
n − 1 players. If pmin is not moved, we have a similar problem with n − 1
players with the additional restriction that all players after pmin have to be
moved before pmin.

Let p′min be the player with the smallest score among the remaining n− 1
players. We can see that it does not help to move p′min after pmin, because that
would mean we have to move him again, and we gain nothing from moving
him past other players still to be moved (for each of them, we decreased the
moving cost by 1, and increased the moving cost of p′min by at least one). If
p′min is currently placed before pmin in the list, by similar arguments as for
Claim 1 we can argue that if p′min is moved at all, it is optimal to move him
directly before pmin. Also, Claim 2 still works. So we are left with the case
that p′min is currently placed after pmin and has to be moved towards the front.
If there are players between pmin and p′min, we could consider moving them
first. If we move p′min first, the start positions of the players in between are
increased by 1. But if we move some player in between first, the end position
where p′min has to be moved to increases by 1, so it can’t be bad if we move
p′min first.

So, we can see that by using induction and the arguments presented above
we can prove that each player is moved at most once, and the players can be
moved in ascending order according to their score.
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Task 3: Sound

4.1 Task description

In digital recording, sound is described by a sequence of numbers representing
the air pressure, measured at a rapid rate with a fixed time interval between
successive measurements. Each value in the sequence is called a sample.

An important step in many voice-processing tasks is breaking the recorded
sound into chunks of non-silence separated by silence. To avoid accidentally
breaking the recording into too few or too many pieces, the silence is often
defined as a sequence of m samples where the difference between the lowest
and the highest value does not exceed a certain treshold c.

Write a program to detect silence in a given recording of n samples accord-
ing to the given parameter values m and c.

Input

The input is read from a text file named sound.in.
The first line of the file contains three integers: n (1 ≤ n ≤ 1,000,000), the

number of samples in the recording; m (1 ≤ m ≤ 10,000), the required length
of the silence; and c (0 ≤ c ≤ 10,000), the maximal noise level allowed within
silence.

The second line of the file contains n integers ai (0 ≤ ai ≤ 1,000,000 for
1 ≤ i ≤ n), separated by single spaces: the samples in the recording.

Output

The output is written into a text file named sound.out.
The file should list all values of i such that max(a[i . . . i + m − 1]) −

min(a[i . . . i + m − 1]) ≤ c. The values should be listed in increasing order,
each on a separate line.

If there is no silence in the input file, write NONE on the first and only line
of the output file.
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Task 3: Sound

Example

sound.in sound.out
7 2 0
0 1 1 2 3 2 2

2
6

4.2 Solution description

There are quite a few possible solutions in this task.
The simplest one is to keep a “sliding window” buffer of the last m values

seen and scan it after each new sample to determine the lowest and the highest
value in the buffer. This obviously runs in O(nm) time, which is too slow for
any larger test cases. Such a solution is given in the file sound1a.pas and is
expected to score about 40%.

An easy improvement over the näıve solution is to cache the minimum and
maximum and only scan the full buffer when a current extreme value is pushed
out. While this still runs in O(nm) time in the worst case, it is much faster in
many cases. Such a solution is given in the file sound1b.pas and is expected to
score about 50%, as the larger test cases are engineered against this heuristic.

An asymptotic improvement is to build a binary tree that keeps the last
m values in the leaves and the minimum and maximum of each subtree in the
internal nodes. Then the global minimum and maximum can be updated in
O(log m) steps by replacing the oldest value in the buffer with the new one
and updating the minima and maxima on the path from the updated leaf to
the root of the tree and the overall running time is O(n log m). Such a solution
is given in the file sound1c.pas and is expected to score full points.

Another solution is to keep a “last seen” index for each possible sample
value and scan this table after each new sample to determine the lowest and
highest value seen no more than m samples ago. This obviously runs in O(na)
time, where a is the size of the range of sample values. Such a solution is given
in the file sound2a.pas and is expected to score about 20%.

Like in the “sliding window” case, we can cache the minimal and maximal
values seen recently and use this information to reduce the scanning range.
This reduces the worst-case running time to O(na/m) and proves to be surpris-
ingly efficient on the average. Such a solution is given in the file sound2b.pas
and is expected to score about 50%, as the larger test cases are engineered
against this heuristic.

The “last seen”-based solution can also be augmented with a binary tree.
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Task 3: Sound

This time we need to keep only the maximum of each subtree, as this is suf-
ficient to reduce the search for the highest and lowest value seen among the
last m samples to O(log a) steps and thus the total running time to O(n log a).
Such a solution is given in the file sound2c.pas and is expected to score about
70%.

Yet another solution is to keep a “number of times seen among the last m”
counter for each possible sample value in addition to the m-element “sliding
window”buffer. Using the buffer, we can update the counters in constant time
when a new sample arrives and an old one retires. Using the counters and the
most recent sample ai, we can check in O(c) steps if the values ai+j−c . . . ai+j
account for all m samples for some j ∈ 0 . . . c. The total running time of this
solution is O(nc). Such a solution is given in the file sound3.pas and is
expected to score abut 60%.

An O(n log n) solution could be written using a segment tree on the whole
input sequence. Such a solution would be expected to score about 80%.

An optimal solution can be developed considering the prefixes and suffixes
of m-element blocks of the input sequence. For each block, we can sweep the
block from left to right and then from right to left to compute the minimal
values for each prefix and suffix of the block, as shown in table 4.1 for the
case n = 16, m = 4. An arbitrary window consists of a suffix of one block
and a prefix of the following one (shown in bold in the first row of the table).
The minimal value of the window can be computed in constant time by taking
the minimum of the min-suffix and the min-prefix corresponding to the suffix
and prefix that make up the window (shown in bold in the second and third
row). The maximal value can be computed similarly, which yields a solution
that runs in O(n) time and O(n) space. Such a solution is given in the file
sound5.pas and is expected to score full points. Actually, it would be sufficient
to keep only two adjacent blocks in the memory at any time, and thus reduce
the memory requirement to O(m).

Sequence 2 8 4 1 7 2 7 4 3 9 4 7 2 3 5 8
Min-Suffix 1 1 1 1 2 2 4 4 3 4 4 7 2 3 5 8
Min-Prefix 2 2 2 1 7 2 2 2 3 3 3 3 2 2 2 2

Table 4.1: Computing the minimal value in a window

Another optimal solution can be derived from the observation that after
encountering a value x, any previously encountered value y ≤ x will not affect
computing the maximum any more. Therefore we can replace the näıve“sliding
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Task 3: Sound

window” with a list of indices j1 < j2 < . . . < jk such that j1 > i − m and
aj1 > aj2 > . . . > ajk

. When a new value ai arrives, the list can be updated
as follows:

1. If j1 = i−m, remove j1 from the front of the list.

2. While k > 0 and ajk
≤ ai, remove jk from the back of the list.

3. Append i to the back of the list.

It should be obvious that the preceding steps quarantee that at any time the
value aj1 is the maximum among the last m samples. While the algorithm can
spend O(m) operations to process the arrival of a sample ai, the total cost of
processing all n samples can’t exceed O(n), as each index enters and leaves
the list only once. Maintaining the minimal value among the last m samples
can be done similarly, or just by keeping another list that is updated based on
the value −ai for each sample ai. Such a solution using O(n) time and O(m)
memory is given in the file sound6.pas and is expected to score full points.

The last solution has the additional benefit that it is easily modifiable for
the case when silence is defined as at least m samples where the noise level
does not exceed the threshold. Also, with a bit more careful programming, we
could get away using only O(c) memory. This could be useful when analyzing
long recordings containing potentially long sections of silence on a device with
limited memory.

Testcases

1. n = 18, m = 6, c = 1, 1 ≤ ai ≤ 9.
A small straightforward case.

2. n = 150, m = 6, c = 6, 0 ≤ ai ≤ 15.
Some overlapping periods of silence.

3. n = 1,500, m = 6, c = 6, 0 ≤ ai ≤ 100.
Boundary conditions: both the first and the last sample belong to silence.
Also big enough that a näıve O(na) solution should time out.

4. n = 131,072, m = 8,192, c = 64, 0 ≤ ai ≤ 100,000.
Special case: n, m, c have form 2i, which could throw off a sloppily
implemented binary tree. Also big enough that a näıve O(nm) solution
should time out.
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5. n = 131,071, m = 8,191, c = 63, 0 ≤ ai ≤ 100,000.
Special case: n, m, c have form 2i − 1, which could throw off a sloppily
implemented binary tree. Also proves that the optimized O(nm) solution
is still O(nm) in the worst case.

6. n = 131,073, m = 17, c = 65, 0 ≤ ai ≤ 100,000.
Special case: n, m, c have form 2i + 1, which could throw off a slop-
pily implemented binary tree. Also proves that the optimized O(na/m)
solution is still O(na) if m is small enough.

7. n = 500,000, m = 750, c = 500, 0 ≤ ai ≤ 1,000,000.
Big enough that an O(nc) solution should time out.

8. n = 800,000, m = 750, c = 800, 0 ≤ ai ≤ 1,000,000.

9. n = 900,000, m = 750, c = 900, 0 ≤ ai ≤ 1,000,000.

10. n = 1,000,000, m = 750, c = 1000, 0 ≤ ai ≤ 1,000,000.

11. n = 1,500, m = 750, c = 6, 0 ≤ ai ≤ 15
Correct output is NONE.

12. n = 1,000,000, m = 10,000, c = 4859.
Test case with maximum n and m, very few periods of silence.

13. n = 1,000,000, m = 5,000, c = 2,600.
Many periods of silence, only linear time complexity solutions should
pass.
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Task 4: Fence

5.1 Task description

Leopold is indeed a lucky fellow. He just won a huge estate in the lottery.
The estate contains several grand buildings in addition to the main mansion,
in which he intends to live from now on. However, the estate lacks a fence
protecting the premises from trespassers, which concerns Leopold to a great
extent. He decides to build a fence, but unfortunately he cannot afford to
put it round all of his newly acquired land. After some thinking, he decides
it is sufficient to have a fence that encloses the main mansion, except for one
important restriction: the fence must not lie too close to any of the buildings.
To be precise, seen from above, each building is enclosed in a surrounding
forbidden rectangle within which no part of the fence may lie. The rectangles’
sides are parallel to the x- and y-axis. Each part of the fence must also be
parallel either to the x-axis or the y-axis.

Figure 5.1: The main mansion (black) and three other buildings with sur-
rounding forbidden rectangles. The thick black line shows a shortest allowed
fence enclosing the main mansion.

18



Task 4: Fence

Input

The input is read from a text file named fence.in. The first line of the input
file contains a positive integer m (1 ≤ m ≤ 100), the number of buildings of
the estate. Then follow m lines each describing a forbidden rectangle enclosing
a building. Each row contains four space-separated integers tx, ty, bx, and by,
where (tx, ty) are the coordinates of the upper left corner and (bx, by) the
coordinates of the bottom right corner of the rectangle. All coordinates obey
0 ≤ tx < bx ≤ 10,000 and 0 ≤ ty < by ≤ 10,000. The first rectangle is the
forbidden rectangle enclosing the main mansion.

Output

The output is written into a text file named fence.out. It contains one line
with a single positive integer equal to the minimum length of any allowed fence
enclosing the main mansion.

Example

fence.in fence.out
4
8 4 13 8
2 1 6 7
4 7 9 11
14 7 19 11

32

Grading

In 30% of the testcases m ≤ 10 holds.

5.2 Solution description

We can build a graph G from the input data by considering all rectangle corners
that do not lie strictly inside any other rectangle as a vertex. Since there are
at most 100 rectangles, the graph G will have at most 400 vertices. We add
an edge between two pairs of vertices x, y in G if the rectangular area between
the corners they represent is empty. The weight (length) of this edge will be
the Manhattan distance between x and y. A closed path in G will correspond
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Task 4: Fence

to a fence where the length of the path is the length of the fence. It is easy
to see that an optimal fence can always be built according to the edges in G
(non-horizontal/vertical edges can be split into one horizontal and one vertical
component).

We must now make sure that the path goes around the main mansion. To
understand the idea outlined below, remember that to determine if a point lies
inside a polygon (which the fence can be conceived as), one can draw a straight
line from the point to some known place outside the polygon and count the
parity of the number of line intersections.

Let X, Y be the coordinates of the top left corner of the mansion. The
idea is to extend the graph G into two layers, corresponding to an even or
an odd number of revolutions. Call this new graph H. When traversing an
edge that corresponds to the movement (x1, y1) → (x2, y2) where x1 ≤ X and
x2 > X and y1, y2 ≤ Y , the number of revolutions traversed increases by 1. If
we go the other direction, it decreases. In both cases the parity of the number
of revolutions changes. Now the problem becomes to find the shortest path
between some node and the same node but in the other layer of the graph
H. This can be solved using standard Dijkstra algorithm (simplified version
is enough), once for each node in the first layer in H.

20



Task 5: Points

6.1 Task description

Consider a regular grid of 3 × N points. Every point in the grid has up to
eight neighboring points (see Fig. 6.1).

Figure 6.1: Neighboring points (marked by arrows).

We are interested in counting the number of different ways to connect the
points of the grid by polygons that fulfill the following conditions:

1. The set of vertices of the polygon consists of all 3×N points.

2. Adjacent vertices of the polygon are neighboring points in the grid.

3. Each polygon is simple, i.e. there must not be any self-intersections.

Two possible polygons for N = 6 are given in the Fig. 6.2.
Write a program that calculates for a given N the number of possible ways

to connect the points as described modulo 1,000,000,000.

Input

The input is read from a text file named points.in. The first and only line
contains one positive integer N (N ≤ 1,000,000,000).
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Task 5: Points

Figure 6.2: Two possible connections of points for N = 6.

Output

The output is written into a text file named points.out. The only line to be
written contains the remainder of the number of ways to connect the points
modulo 1,000,000,000.

Example

points.in points.out
4 40

Grading

• 30% of the test cases have values of N ≤ 200.

• 60% of the test cases have values of N ≤ 100,000.

6.2 Solution description

Firstly, if you try to draw a polygon fulfilling the necessary conditions, you are
strongly limited in the ways you can move. When starting from the lower left
point of the grid in an anti-clockwise direction, you have to get to the lower
right point first before you can move to any point in the top line of the grid.
This is due to the fact that your polygon would otherwise split the grid in two
parts, although you still had to get to the lower right and to the upper left
point. Since this is impossible, we can deduce that there is a bottom part of
the polygon never connecting points in the top line of the grid and a top part
of the polygon never connecting points in the bottom line in the grid.
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Figure 6.3: Dashed line: Bottom part. Pointed line: Top part.

Secondly, that means that when drawing the top or the bottom part of the
polygon from left to right, only two lines of the grid may be used which means
you cannot move more than one column in the opposite direction. Otherwise
the way to the rightmost column could not be completed.

With these observations, we can take advantage of a left-right-ordering:
We cut a valid polygon at a specified column vertically in two parts and look
at the left part of it. There will be two open endings (first observation) at
which we could continue to draw the polygon. Apart from the last column the
shape of the left part of the polygon does not influence the number of ways we
can continue to draw it, since it is not possible to go more than one column
backwards (second observation).

Now we have to identify the situations or states that occur at the specified
column where we made our vertical cut. With each state we associate how
many possibilities we had to draw the left part of the polygon. When we find
a recursive formula to get from the states of column i to the states of column
i+1 we can construct all possibilities from left to right, and we have basically
solved the problem.

The states you choose to identify are arbitrary, as long as they are correct.
A very short solution is to discard any vertical connections in the column we
look at, and to associate with the upper, the middle and the lower point of
the column how many connections they have to the column to the left.

State 1 State 2 State 3 State 4 State 5 State 6
2 1 1 1 1 0
1 1 2 1 0 1
1 2 1 0 1 1

One example for each state is shown in fig. 6.4. If we are in column i we do
not need any other information than what state the left part of the polygon
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is in and how many possibilities we had to draw it so far. Let us denote that
number with si(state).

Figure 6.4: Examples for states 1, 2, 3, 4, 5 and 6.

Now we have to find the recurrence relationship for our si:

si+1(1) = si(5)
si+1(2) = si(5)
si+1(3) = si(4) + si(6)
si+1(4) = si(1) + si(2) + si(3) + si(4) + 2si(5) + si(6)
si+1(5) = si(1) + si(2) + si(3) + si(4) + 2si(5) + si(6)
si+1(6) = si(1) + si(2) + si(3) + si(4) + 2si(5) + si(6)

In fig. 6.5 all possibilities to construct state 6 out of the column to the left
are being shown.

Figure 6.5: Recurrence relationships for state 6.

Let us now take a look at the possible starts, i.e. possible connections
between the top and bottom part of the polygon.

Obviously states 1 and 2 as well as states 4, 5 and 6 have the same re-
currence relationships, and their starting values are equal, too. Therefore it
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Figure 6.6: Possible starting configurations are states 2 (twice) and states 4,
5 and 6.

suffices to calculate states 1, 3 and 4:

si+1(1) = si(4)
si+1(3) = 2si(4)
si+1(4) = 2si(1) + si(3) + 4si(4)

In column i = N − 1 we have to close our polygon. Then the final result
is sN−1(1) + sN−1(2) + sN−1(5), i.e. 2sN−1(1) + sN−1(4). See fig. 6.7 for
reference.

Figure 6.7: Possible closing configurations are states 1, 2 and 5.

Since the state change from column i to i+1 is a linear mapping, we can do
it with a matrix multiplication. In order to do that, we combine states 1, 3 and
4 in a vector with three components, and rewrite the recurrence relationships
above as a matrix:

M =

 0 0 1
0 0 2
2 1 4

 vstart =

 0
2
1

 vend =
(

2 0 1
)

Now, the problem is being solved by calculating the expression vendM
N−1vstart.

We could simply do N − 1 matrix-vector multiplications to get the result,
but this is definitely too slow for N = 1,000,000,000. As these multiplications
are associative, we can instead calculate MN−1. This can be done rather
quickly, namely in O(log N) steps:
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calculateMpowerE(M, e):
Result := IdentityMatrix;
while (e > 0):

if (e mod 2 == 1):
Result = Result * M;

M = M * M;
e = e div 2;

return Result;

Some math or a different state representation allows you to reduce the
matrix to a 2× 2 matrix but this was not expected.

The last problem we have is that the numbers can get really big. Since
only the number of possibilities modulo 109 needs to be calculated, we can do
this modulo-operation on all intermediate results. They will always fit in a
64-bit integer, so there is no more trouble in that respect.

A different solution to get full score is to use a linear approach but pre-
compute values for multiples of 1,000,000 and start the search from there.
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7.1 Task description

We are given a sequence a1, ..., an. We can manipulate this sequence using
the operation reduce(i), which replaces elements ai and ai+1 with a single
element max(ai, ai+1), resulting in a new shorter sequence. The cost of this
operation is max(ai, ai+1). After n−1 operations reduce, we obtain a sequence
of length 1. Our task is to compute the cost of the optimal reducing scheme,
i.e. the sequence of reduce operations with minimal cost leading to a sequence
of length 1.

Input

The input is read from a text file named sequence.in. The first line contains
n (1 ≤ n ≤ 1,000,000), the length of the sequence. The following n lines
contain one integer ai, the elements of the sequence (0 ≤ ai ≤ 1,000,000,000).

Output

The output is written into a text file named sequence.out. In the first and
only line of the output print the minimal cost of reducing the sequence to a
single element.

Example

sequence.in sequence.out
3
1
2
3

5
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Grading

In 30% of the test cases n ≤ 500 holds.
In 50% of the test cases n ≤ 20,000 holds.

7.2 Solution description

Simple observations

The definition of the reduce operation in the problem statement could be
rephrased in the following way. We have n points on a line (corresponding
to the elements of the sequence), so there are n − 1 line segments connecting
pairs of adjacent points. In the beginning all n−1 line segments are erased, so
each point forms a single set. A single reduction is equivalent to drawing back
one of these line segments, what results in joining the sets that contain the
points corresponding to the ends of this line segment; the cost of this operation
is equal to the maximal element of the resulting set. This interpretation of the
reduce operation will simplify some of the following solutions’ descriptions (as
in this version the sequence never becomes shorter).

O(n3) dynamic programming solution

A segment of a sequence is its contiguous subsequence, i.e. al, al+1, . . . , ar. In
the simplest solution for each segment of the sequence we count the minimal
cost of reducing it into a single element (let us denote this value by tab[l, r] for
the segment al, . . . , ar). Obviously, for every i ∈ {1, . . . , n} we have tab[i, i] =
0. If l < r then the last operation in the process of reducing this segment
to a single element always costs M = max(al, . . . , ar); in our solution we
can only choose the position of this reduction, which is in other words the
position of the line segment drawn during this reduction. That is why for
l < r formula tab[l, r] = min(tab[l, i] + tab[i + 1, r] + M : l ≤ i < r) holds.
Using this formula we can compute all values of array tab from the shortest
to the longest segments. The total time complexity of this solution is O(n3),
because there are n2 fields of array tab and computing each of them requires
O(n) time. This solution — implemented in file seqs1.cpp — scores 30 points
out of 100.
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A greedy observation

To achieve a better time complexity of our solution we need to introduce some
greediness. Let us assume for simplicity that a0 = an+1 = ∞. We claim that
performing n− 1 repetitions of the following step:
find i such that ai−1 ≥ ai ≤ ai+1

if (ai−1 < ai+1) then reduce(i− 1) else reduce(i)
gives us an optimal reduction scheme for our sequence.

Proof: Firstly we need to prove that in each of the n − 1 steps finding a
required value of i is possible. In each step let us start with j = 1 and while the
condition aj−1 > aj holds let us increase the value of j by one. This process
will certainly terminate because an < an+1 = ∞ (since n ≥ 1). The value of
i = j−1 in the moment of termination is an example of an index that we were
looking for.

Now let us find out why this reduction scheme is optimal. We will prove
this by induction on the value of n. If n = 1 then this solution is obviously
optimal with cost 0. If n > 1 then we need to prove that there exists an
optimal reduction scheme of our sequence in which the reduction determined
by our greedy step is done in the beginning. Let us assume that ai−1 < ai+1

(the other case is analogical). Let S be any optimal reduction scheme of our
sequence in which the reduction between ai−1 and ai is not the first reduction
(if no such scheme exists, then we are done). Let us consider two reductions:
the one defined by the line segment between ai−1 and ai (we will call it r1) and
the one between ai and ai+1 (called r2). If none of the reductions r1 and r2 is
first in S then we can move the first of them that appears in S (let ri be this
reduction) to the beginning of S. After performing this operation, the cost of
S does not increase. Why? Firstly, the cost of ri can only decrease or stay
the same (the sooner a reduction is performed, the lower is its cost). Secondly,
performing this reduction earlier will not change the cost of any reductions
performed in S before the second of reductions r1 and r2, because inserting ai

to a set containing either ai−1 or ai+1 does not change the maximal element
of this set and only reductions involving this set could change their costs. On
the other hand, after both r1 and r2 were performed, the costs of all following
reductions will not change (all three elements ai−1, ai and ai+1 will be in a
single set since then).

If ri = r1 then we are done now. In the opposite case we will prove that
swapping r2 (which is now in the beginning of S) and r1 decreases the cost of S
(what will give a contradiction with optimality of S). Let us notice that after
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this swap the cost of all reductions apart from r1 and r2 in S is exactly the
same as in the beginning (the argument is similar to the one from the previous
fragment of the proof). The second of those reductions in both cases (before
and after the swap) costs exactly the same, as its resulting set is the same. So
the change of cost of S is cost(r1)− cost(r2) = ai−1 − ai+1 < 0, what gives us
the desired contradiction.

Implementations of the greedy method

A straightforward implementation of the greedy approach (performing simply
one step after another on a sequence represented as an array of integers) leads
to an O(n2) solution. This solution — implemented in file seqs2.cpp — scores
50 points out of 100. There is a way of implementing this solution which has
complexity O(n2) only in some special cases (files seqs3.cpp and seqs4.cpp).
These solutions are very similar to the model solution (see below) and behave
very well on random test data. They may score up to 70 out of 100 points.

However, an implementation of this algorithm with complexity O(n) can
also be obtained. In this solution the sequence will be analyzed from a0 to
an+1. Throughout the algorithm a stack containing a decreasing subsequence
of a is maintained. In the beginning the stack contains only values a0 and a1.
In each of the following steps (for i = 2, 3, . . . , n + 1), if ai is smaller than the
element on the top of the stack, then ai is simply pushed on the stack, and
in the opposite case all possible reductions are made. In other words, if the
element from the top of the stack is not greater than ai, then this element is
reduced with smaller of the elements: ai and the element second from the top
of the stack. This operation pops the element from the top of the stack and
the process continues. This loop stops at one of the conditions:

• if i = n+1 and the stack contains only two elements, one of which must
be a0 = ∞ — this terminates the algorithm, the sequence was reduced
to a single element,

• if ai is smaller than the element on the top of the stack (in this case ai

is pushed on the stack) — this terminates the loop in the case i < n+1;
there will surely be such a moment in the loop for every i < n + 1,
because a0 > ai.

Even though a single step of the algorithm (for a given i) may take O(n)
operations, the whole algorithm has complexity O(n). This is true because
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the number of iterations of the inner loop of the algorithm is bounded by the
total number of elements that are pushed on the stack, and the latter is O(n)
because in every step only one element is pushed on the stack.

This solution is implemented in file seq.cpp.
Another nice way of solving the problem is summing up the maximum

value of all neighbouring numbers in the sequence.
To see that this is true, consider the following reduction strategy: we pick

the maximum element, reduce the sequence to the left of this element, then
the sequence to the right of this element, and finally we use reduce(0) twice to
reduce the whole sequence to just the maximum element. We can now prove
the correctness by induction over the length of the sequence. Suppose that our
sequence has k elements and the above algorithm works for any sequence with
less than k elements. We are now left with three cases:

1. The maximum element is the first element of the sequence. In this case,
we first reduce the rest of the sequence, and the last step reduces the two
remaining elments (with the same cost as the value of the first element).
By induction hypothesis, the algorithm give the correct cost for reducing
the rest of the sequence, and since the cost increases by the value of the
first element, we can see that the algorithm still works in this case.

2. The maximum element is the last element of the sequence. This case is
similar to the first case.

3. The maximum element, say m, is neither the first nor the last element.
Let ml denote the cost of reducing the left side and mr denote the cost
of reducing the right side. The cost of reducing the complete sequence
is then equal to mr + ml + 2 ·m. We can see that this is the same value
which the algorithm would return.

Finally, the induction hypothesis holds for single elements, because the
algorithm always yields 0 in this case.
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